

Remediation Technologies and Water Treatment Operations Andrea Kassahun, Michael Paul

Wismut GmbH, 09117 Chemnitz, Jagdschänkenstraße 29

Challenges and opportunities in the treatment and management of arsenic in the mining industry in Chile, International seminar, Pontificia Universidad Catolica de Chile, 8 June, 2017

WISMUT project

•1946 - 1990, SDAG WISMUT world's no. 4 uranium producer; major foreign uranium supplier to the Soviet Union (~ 216,000 tonnes of U from 20⁺ deposits)

•1991, German government new company owner; remediation of one of the most extensive uranium-mining legacies in the world (largest European environmental remediation programme)

WISMUT project

•1946 - 1990, SDAG WISMUT world's no. 4 uranium producer; major foreign uranium supplier to the Soviet Union (~ 216,000 tonnes of U from 20⁺ deposits)

•1991, German government new company owner; remediation of one of the most extensive uranium-mining legacies in the world (largest European environmental remediation programme)

7 production complexes, with more than 1,000 objects:

- 5 underground mines (~ 80 million m³ excavation volume)
- 1 open pit (~ 84 million m³)
- 2 processing plants, 10 TMF (160⁺ million m³ tailings)
- 60⁺ waste rock piles (325 million m³ WR)
 - 3,700 hectare operational areas with contaminated facilities

WISMUT project

•1946 - 1990, SDAG WISMUT world's no. 4 uranium producer; major foreign uranium supplier to the Soviet Union (~ 216,000 tonnes of U from 20⁺ deposits)

•1991, German government new company owner; remediation of one of the most extensive uranium-mining legacies in the world (largest European environmental remediation programme)

- 7 production complexes, with more than 1,000 objects:
 - 5 underground mines (~ 80 million m³ excavation volume)
 - 1 open pit (~ 84 million m³)
 - 2 processing plants, 10 TMF (160⁺ million m³ tailings)
 - 60⁺ waste rock piles (325 million m³ WR)
 - 3,700 hectare operational areas with contaminated facilities

Wismut remediation activities

- Safe closure of underground mines and controlled mine flooding
- In-situ stabilization or open Pit disposal of mine waste
- Tailings dewatering & stabilization
- Vegetated soil covers on tailings and waste rock
- Dismantling of surface structures, decontamination and site cleanup, disposal of contaminated material into containments
- Environmental monitoring & maintenance
- Water treatment and safe management of residues

Wismut water treatment

- Mine flooding since 1991; water treatment since 1995 (until 2040)
- 4 WTP's for mine drainage, 2 WTP's for TMF seepage and pond water
- Prevailing water treatment technology: modified lime precipitation
- Upcoming technologies: ion exchange, GFH sorption, membrane filtration
- Discharge limits for U, As, ²²⁶-Ra, heavy metals, Fe, Mn, SO₄, salt
- Treatment capacity of individual plants 100 700 m³/h (max. 1,200 m³/h)
- Total throughput ~ 20 million m³/a
- Total residue volume ~ 25.000 m³/a, treatment sludge stabilization after dewatering by cement addition (to increase physical and chemical stability)
- Residue deposition on company storage sites

Arsenic retention in lime precipitation plants

- 0.1 2 mg/l arsenic in mine and TMF seepage water
- Site specific regulatory limits10 100 µg/l

-airation (~ 5 m³/m³) -limewater (~ 0.05..0.9 kg/m³; stepwise, pH ~ 9-10) -KMnO₄ (~ 1 g/m³) -BaCl₂ (~ 0.1 kg/m³) -FeCl₃ (~ 0.1 kg/m³) -flocculation aid

- gas exchange, mixing
- oxidation of As, Fe, Mn
- precipitation of ironhydroxide sludge containing As, U, Ra, heavy metals

Ronneburg WTP, 850 m³/h

Arsenic retention in lime precipitation plants

- Sludge separation and dewatering - sedimentation tanks - chamber filter presses, centrifuges)
- (30 50 wt% solid content)

Sludge stabilization (physical, chemical) - cement / ash / CaO addition (~ 0,5 kg cement / kg sludge) - crumbly substrates, monolithes

Schlema WTP, 1,200 m³/h

dewatered sludge (42 % dry mass) 8% Fe Ba 3% 4% Ca Si 4% 1:10 leaching tests **U** As blue: dewatered treatment sludge 3%_ 3% red: stabilized treatment sludge SO4-S Mn TIC ■ TOC 14% - A1-FS As gel [µg/] ---- A1-FB As gel [µg/l] 58% Mg A A 80 70 Schlema WTP, 1,200 m³/h 60 **5**0 · 40 · **Se** 30 · П 20 10 0. 01/07 01/09 01/10 01/08

Arsenic retention in lime precipitation plants

Wismut Head Office

Arsenic retention in lime precipitation

ching solution	binding form of leached contaminants water soluble form
II	cation exchangeable form
Illa	carbonates, specific bonds
IIIb	easily reducible minerals
IV	organic complexes
Va	poorly crystalline Fe-oxyhydroxides
V	crystalline Fe-oxides
VI	residual fraction (silicates, sulphides)

Poehla mine water chemistry

SO₄ < 5 mg/L U < 20 μg/L pH = 7 – 7.5

```
E_{H} = 10 - 100 \text{ mV} (CH_4, H_2)
```

Fe = 5 mg/L (Ca, Mg, Na, HCO₃) As = 2 mg/L

Pohla mine water microbiology

Sulfuricurvum spp., Sulfurovum spp., Syntrophus spp., Desulfurivibrio spp.

Candidatus Methanoperedes, Methanoregula, Methanobacterium

Patinella spp., Acremonium spp.

Poehla mine water chemistry

SO₄ < 5 mg/L U < 20 μ g/L pH = 7 - 7.5 E_H = 10 - 100 mV (CH₄, H₂) Fe = 5 mg/L (Ca, Mg, Na, HCO₃) As = 2 mg/L

Pohla mine water microbiology

Sulfuricurvum spp., Sulfurovum spp., Syntrophus spp., Desulfurivibrio spp.

Candidatus Methanoperedes, Methanoregula, Methanobacterium

Patinella spp., Acremonium spp.

Arsenic concentration in mine water Poehla (Paul et al., 2013)

HPLC-GC-MS-Analysis of dissolved arsenic in Poehla mine water (B. Planer-Friedrich, University Bayreuth)

Lab tests improvement iron flocculation

Field results

mg/l	рН	U	As	Na	HCO ₃	CO ₃	CI	SO ₄
10/2014	9.1	4.7	0.5	1,360	1,350	161	419	1,750
03/2015	9.2	7.0	0.6	1,790	1,260	232	509	2,250

Fixed bed adsorption of arsenic to GFH:

- ferrihydrite adsorption (iron-coprecipitation) BDAT for heavy metal removal from MIW
- GFH adsorption BAT for As removal in drinking water treatment
- waste water application studies for PO₄

0.5 mm

FeOH^{2+,} FeOH, FeO⁻ (pH depending surface charge, pzc ~ 7-8)

Intraparticle surface diffusion (sorption kinetics)

Fixed bed adsorption of arsenic to GFH:

- ferrihydrite adsorption (iron-coprecipitation) BDAT for heavy metal removal from MIW
- GFH adsorption BAT for As removal in drinking water treatment
- waste water application studies for PO₄

bed volume 5 ml, GEH, velocity 10 BV/h, t_r 6 min

Fixed bed adsorption of arsenic to GFH:

- ferrihydrite adsorption (iron-coprecipitation) BDAT for heavy metal removal from MIW
- GFH adsorption BAT for As removal in drinking water treatment
- waste water application studies for PO₄

bed volume 5 ml, GEH (akaganeite, pzc 7.5-8.2), velocity 10 BV/h, t_r 6 min

Fixed bed adsorption of arsenic to GFH:

- ferrihydrite adsorption (iron-coprecipitation) BDAT for heavy metal removal from MIW
- GFH adsorption BAT for As removal in drinking water treatment
- waste water application studies for PO₄

bed volume 5 ml, GEH (akaganeite, pzc 7.5-8.2), velocity 10 BV/h, t, 6 min

Fixed bed adsorption of arsenic to GFH:

- ferrihydrite adsorption (iron-coprecipitation) BDAT for heavy metal removal from MIW
- GFH adsorption BAT for As removal in drinking water treatment
- waste water application studies for PO₄

bed volume 5 ml, FerroSorp (ferrihydrite/calcite,

pzc ~ 8), velocity 2.5 BV/h, t_r 24 min, pH 6

Fixed bed adsorption of arsenic to GFH:

- ferrihydrite adsorption (iron-coprecipitation) BDAT for heavy metal removal from MIW
- GFH adsorption BAT for As removal in drinking water treatment
- waste water application studies for PO₄

Results from Lab tests for TMF seepage water treatment:

- pH = 6..6.5 to maximize negative charge of arsenic species and positive charge of HFO surface
- v = 2.5 BV / h to allow for intraparticle diffusion
- Specific load: 5 10 mg As / g GFH

R. Schöpke, Brandenburg University of Technology, Cottbus

As - binding stability at GFH

leaching solution	binding form of leached contaminants
I	water soluble form
II	cation exchangeable form
Illa	carbonates, specific bonds
IIIb	easily reducible minerals
IV	organic complexes
Va	poorly crystalline Fe-oxyhydroxides
V	crystalline Fe-oxides
VI	residual fraction (silicates, sulphides)

1:10 leaching tests (pH-stat: 24 h, pH 4 and 11)

рН		4.0	11.0
EC	mS/cm	2.5	5.17
U	mg/l	0.0191	8.57
As	mg/l	0.009	17.2
К	mg/l	10.6	<25
Na	mg/l	174	1380
Mo	mg/l	<0.02	107
Mg	mg/l	48.5	4.1
Ca	mg/l	174	7.1
Fe	mg/l	<0.02	0.524
SO ₄	mg/l	23	356
CO ₃	mg/l	<5	864
HCO ₃	mg/l	<5	981
тос	mg/l	0.63	791

Summary WISMUT Arsenic Water Treatment

Lime precipitation plants

- -BAT for arsenic removal from MIW
- -Sorption and coprecipitation at ferric hydroxides
- -Limitations in biochemically reduced mine water pre-oxidation step required
- -Stable As binding in precipitaiton sludge

- -BAT for arsenic removal from drinking water
- -Sorption depends on pH and filter velocity pH and velocity adjustment required
- -Stable As binding at slightly acidic to slightly alkaline pH
- -As mobilization at alkaline pH

Thank you for attention!

