

Partial Roasting Technology

June 8th 2017

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile, Santiago de Chile, Chile

presented by Dr. Alexandros Charitos

Disclaimer

This presentation is presented on a private and confidential basis to the viewer. It must not be disclosed to any other party, organisation or individual.

Although every effort has been made to undertake this presentation with care and diligence, Outotec GmbH & Co. KG cannot guarantee the accuracy of any data, forecast or assumptions or that a proposed investment will be successful.

Outotec GmbH & Co. KG shall not accept any liability whatsoever to any party using or relying upon the information published in this presentation.

Copying of the document and giving it to others as well as the use and communication of the content thereof are strictly forbidden without express authority from Outotec GmbH & Co. KG. Offenders are liable to the payment of damages. All rights are reserved in the event of grant of a patent or the registration of a utility model or design!

Outotec GmbH & Co. KG, June 2017

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

© Outotec - All rights reserved

15 June 2017

Introduction

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

© Outotec - All rights reserved

Why remove impurities prior to Smelting

- Above 10 % of handled concentrates are above penalty levels
- Countries impose limits on PENALT As for importing Element concentrate Iron
- Copper matte will be contaminated with high levels of As
- Arsenic will be distributed to all outgoing material streams potentially causing health issues and environmental problems

15 June 2017

Partial Roasting Solution before smelting

- Arsenic content in feed can be reduced from
 ⇒ more than 12 wt.-% down to < 0.3 wt% in the roasted calcine
 <p>⇒ The calcine can be directed to a smelter or sold to the market
- Sulphuric acid as saleable byproduct with low Arsenic content < 1 ppm

Client	Start	Capacity tpd	sulphur Feed → wt	content Calcine t%	Arsenic content Feed → Calcine wt%	
Boliden	1980	1080	25-30	16-20	2.5	0.2
Lepanto	1983	180	34	22	10-12	0.3
Codelco	2013	1700	34	22	5.8	< 0.3

De-arsenifying Roasting for Copper concentrates

✓ Outotec has built more than 300 fluidized bed roasters

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

General Partial Roasting Flowsheet

Pyrometallurgical route for calcine de-arsenification:
 ⇒ Route followed in Codelco DMH roaster

Effluent Treatment Plant

Arsenic stabililization as ferric arsenate or calcium arsenite

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

15 June 2017

Arsenic containing concentrates

- Enargite rich deposits are common in Chile and South America
 - \Rightarrow The Codelco DMH concentrate which is rich in Enargite (Cu_3AsS_4) is not unique!

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

7

15 June 2017

Example

Codelco DMH Roaster

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

© Outotec - All rights reserved

Codelco DMH Roaster - Flowsheet

Gas Phase:

 $\mathsf{ROASTER} \to \mathsf{CYCLONES} \to \mathsf{PC}\ \mathsf{CHAMBER} \to \mathsf{EV}.\mathsf{COOLER} \to \mathsf{H}\text{-}\mathsf{ESP} \to \mathsf{GAS}\ \mathsf{CLEANING}$

Codelco DMH Roaster Plant

Plant capacity 550 ktpy concentrate (Cu 29 wt%; As 5.8 wt%)

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

Codelco DMH Roaster Peformance -Elimination of bed sintering

- Bed sintering had been a challenge during commissioning (2014)
 - Has been a result of melted phases in tuyere air vicinity
 - Encountered after shutdowns
- Analysis of sintered probes revealed:
 - Hot spots of 1200 1400°C locally (from mineralogical analysis)
 - \Rightarrow from high sulphur and oxygen in the tuyere vicinity
 - A sand (SiO₂) content of only 30 wt.-%
- Eliminating sintering required
 - Not allowing hotspots to occur

Industry in Chile

- Increase the sand (SiO_2) content \Rightarrow to obtain an inert bed

No longer possible through fluidization engineering measures

Challenges and Opportunities in the treatment and management of Arsenic in the Mining

Fluidized Bed Key Operating Factors

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

Outotec

Fluidized Bed Key Operating Factors

- Elimination of bed sintering through engineering measures
 - ⇒ Introducing inert material as bottom bed layer

Codelco DMH Roaster – Capacity

- Codelco DMH capacity is:
 - Around 75 tph dry feed
- Codelco DMH capacity is:
 - At the 110 % load line
 - Always above 100 % load
- Further solids to the roaster
 - Additional silica sand (< 10 wt.-% of feed)
 - Sand required to form a bottom inert bed within the roaster
 - ⇒ Thereby, hotspots and bed sintering is avoided

✓ The Codelco DMH roaster operates above 100 % load

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

Codelco DMH Roaster – As removal

✓ The Codelco DMH roaster exceeds the product quality design

✓ In addition antimony (Sb) removal is approx. 60 – 70 %

Gas Cleaning of partial roaster off-gases

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

Technical Grade Sulphuric Acid

• Nasty impurities increase:

Industry in Chile

- ⇒ Arsenic, Hydrogen Chloride, Hydrogen Fluoride, Mercury, Selenium
- ✓ However, acid quality has to be sustained!

Impurity	
Appearance	Water Clear
Colour	40 Hazen
Hg (Mercury)	< 0.5 ppm
Fe (Iron)	< 25 ppm
Ni (Nickel)	< 1 ppm
Cr (Chromium)	< 1.5 ppm
Mn (Manganese)	< 0.3 ppm
SO ₂ (Sulph. Diox.)	< 30 ppm
Cl ⁻ (Chloride)	< 2 ppm
F ⁻ (Fluoride)	< 5 ppm

Challenges and Opportunities in the treatment and management of Arsenic in the Mining

Typical Flowsheet for Partial Roasting

OTOVENT Quench

- Cools gases to saturation
- Allows for As particles to agglomerate

15 June 2017

High Efficiency Cooling Tower Scrubber

- Allows for adjustable pressure drop
- As particles to effluent

- Water removal by cooling
- Conditioning of Acid concentration

- Removal efficiencyDust > 99.9 %
 - Acid Mist > 99.7 %

Outotec

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

Impurity Removal from gases

- ✓ As in effluent bleed as HAsO₂
- \checkmark As in acid < 1 ppm

No emissions at stack \checkmark

	Dust	Fumes	Acid	Wat er	Halides	Mercury	Own Technology
	Si, Cu, Zn, Fe, Pb	As, Cd, Se, Sb, Bi	H₂SO₄ Mist	H ₂ O	CI, F	Hg	
1 Quench Tower	< 50 %	< 30 %	< 30 %	0	0	0	ОТО
2. Scrubber	< 95 %	< 90 %	< 50 %	0	0	0	ОТО
3. Gas Cooling Tower	0	0	0	Yes	Yes	0	ОТО
5. Wet ESP	> 90 %	> 99 %	> 99 %	Yes	0	Yes	ОТО
Cha 19 15 June 2017 Indu	the Mining	Outotec					

19 15 June 2017

Effluent treatment plant

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

Ferric Arsenate Precipitation Process

21 15 June 2017

Industry in Chile

Ferric Arsenate Precipitation Process

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

© Outotec - All rights reserved

Ferric arsenate Precipitation Process

Summary

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

© Outotec - All rights reserved

Summary – Fate of As

Outlook

Challenges and Opportunities in the treatment and management of Arsenic in the Mining Industry in Chile

© Outotec - All rights reserved

Outlook

Partial Roasting at the forefront

- ⇒ allows for As- rich concentrates treatment to clean concentrate
- \Rightarrow Allows for production of marketable acid

• Pyrometallurgical flue dust treatment

- \Rightarrow through combination with partial roaster
- ⇒ OR through dedicated small roaster unit at a smelter with no partial roaster

- ✓ Roasting Gas Cleaning Acid Plant & As stabilization in the effluent treatment plant is a sustainable route to process arsenic
- ✓ The successful operation of the DMH roaster is a monument of Chilean – European mutual cooperation

Outotec Sustainable use of Earth's natural resources