1st International Seminar on Mining and Sustainable Development

Impurities: Regulatory Trends, Markets and Technologies

Regulatory Trends Affecting the Processing, Transport and Disposal of Copper Industry Impurities

Don Smale, Secretary-General, ICSG
Thursday 6 April, 2017 CESCO Week, Santiago, Chile
ICSG Membership

- Membership open to any country involved in copper production, use or trade.
- 24 member governments plus the European Union
- Countries joining recently: Zambia, Iran and Brazil. Possible new members: Mongolia and DR Congo
- Headquarters in Lisbon, Portugal.
- With International Lead and Zinc Study Group
- and International Nickel Study Group

Australia, Belgium, Chile, China, Finland, European Union, France, Germany, Greece, India, Italy, Japan, Iran, Luxembourg, Mexico, Peru, Poland, Portugal, Russian Fed., Serbia, Spain, Sweden, United States, Zambia, Brazil.
Contents

1. Drivers of Regulations on Copper Impurities: Recent Data
2. Limits to Air Emissions of Sulphur from Copper Smelters
3. Environmental Limits to Smelter Emissions and Technology Regulations
4. Occupational Air Exposure Limits for Smelter Emissions of Impurities
5. Copper Concentrate Trade Limits and New Risks to Transport of Copper Concentrates and Raw Materials
1. Drivers of Regulations on Copper Impurities: Recent Data
Regulations on impurities are tightening because metals not recovered ends as industry emissions or as hazardous waste.

“There are >3,000 industrial sites with populations at risk of industrial pollution from lead, mercury, chromium, arsenic, radio-nuclides and pesticides.”

“Health impacts from pollution vary according to toxicant: lead, mercury and arsenic affect brain development in children causing disability.”

ICSG data: 55% of the copper concentrate produced is exported. 9 countries produce over 65% of global copper concentrate output.

But only a share of the copper concentrate output is smelted into anodes in these 9 countries.
Increased global copper concentrate supply: up ~30% in 2011-2016. With more concentrate produced, more impurities have been mined.

Record global copper concentrate output growth: ~7% in 2016!
Copper content in smelter output higher than global refined copper output again in 2016

World Copper Smelter and Refined Output from Concentrates. 2016 Vs 2015 January - November (kt-Cu)

More blister/anodes from concentrates = more impurities to be recovered/disposed by copper refineries in 2017.
Depletion of surface layers is affecting copper ore quality. End of life copper mines to replace >600 kt in 2016-2020.

Porphyry Copper Deposits

- Surface Layers: Cu2O, CuCo3(OH2)...peak output except in Congo.
- Secondary Copper Sulphide Ore Layers (Cu2S, CuS)... we are there...
- Primary Sulphide Ores Layers (CuFeS2, Cu2FeS4)
As copper content falls, copper miners export more concentrates. So international trade of impurities and byproducts is growing fast.
In 2015 concentrate trade achieved 8.2 Mt in copper content. More in 2016. Global trade of impurities growing faster than copper content in concentrates.

2015 Global Exports of Copper Concentrates by Exporter Country and Content kt

2015 Imports of Copper Concentrates by Main Importers and by Content kt
Chinese imports of copper concentrates: up ~28% YoY in 2016. But ICSG reported copper content in imported concentrate: 25.2%.

China 2016 Copper Concentrate Imports and Contents kt-Cu

Copper Content in Chinese Imports, 4,076 kt-Cu, 24%

Chinese Imports of Impurities and Byproducts, 12,941 kt, 76%

China 2016 Refined Copper Output and Metal Sources kt-Cu

Copper Smelter Output and Blister Imports 2016

Refined Copper Output 2016

- Net Imports Blister
- SX-EW Mine Refined
- From Scrap
- From Concentrates
Increasing rates of arsenic, sulphur and iron in copper concentrates: reported before the current expansion in concentrate production.

Global sample of copper concentrates of the copper industry:
4 years ago 10% of copper concentrates reported arsenic levels between 0.42% and 7.5%.
Arsenic content in world concentrate output is growing fast:
0.13% in 2000 ...>0.20% in 2016*...0.30% in 2020?

10% of the global copper concentrate supply already has arsenic levels over the 0.2% penalty level **

Impact of more complex copper concentrates: more impurities in anodes, more smelter flue dust, more refinery slimes, more by-products.
Over 58% of all copper tailings 1910-2010 generated after 1990. Report commissioned by the Canadian Government defines tight standards to prevent more copper mines tailings failures after Mount Polley mine incident.

For **new mines**, a shift to “Best Available Technologies (BATs)” in tailings storage, including the following:

a) Eliminate surface water from the impoundment.
b) Unsaturated conditions with drainage provisions.
c) Achieve dilatant conditions by compaction.

For **existing mines**, applying BATs to conduct
• dry closure of tailings impoundments.
• Mines should dewater tailings
• and pursue all alternatives to perpetual water covers.

Appointment of Independent Tailings Review Boards to provide **third-party advice**
• on design,
• construction,
• Operation,
• closure.

https://www.mountpolleyreviewpanel.ca/final-report
• Physical and chemical characteristics of tailings vary with nature of the ore, geological setting and climate.

• The position statement will not apply retroactively.

ICMM members recognise that:

1. Tailings production will remain inherent to mining for the foreseeable future.
2. Catastrophic TSF failures are unacceptable.
3. Systems, standards and resources to prevent failures required.
4. Potential for TSF failures must be taken account of in facilities lifecycle.
5. Technical guidance to prevent catastrophic failures of TSFs.

• ICMM Members to implement their commitments by November 2018.
2. Limits to Air Emissions of Sulphur from Copper Smelters
SO2 emissions from all sources are tracked remotely by NASA. Smelters in Peru, Russia, Australia and Mexico remain important sources in 2016.
High SO2 emissions observed by NASA across China and India in 2016

http://portal.nccs.nasa.gov/cgi-fp/fp_2d_chem.cgi?region=sevseas&dtg=2016120206&prod=8so2cmass&model=fp&tau=000&®ion_old=shout&dtg_old=2016120206&prod_old=8so2cmass&model_old=fp&tau_old=000&&loop=0
Chinese 2006 regulation on SO2 capture for copper smelters allowed replacement of blast furnaces by oxygen blowing technology.
SO2 emissions per tonne of copper output reported for some copper smelters in China in 2016

China Yunnan Province Copper Smelters:
SO2 Emission Factors: Kg S per Tonne of Copper Output

Source: Paper PY1-2, Copper 2016 Conference, Kobe Japan, November 2016
But Chinese smelter emission coefficients still far from 4-6 kg/tonne seen in more efficient European Union smelters

Source: Aurubis Environmental Audits.

New SO2 air emission limits in the European Union more flexible for smelters using concentrates. SO2 limits for scrap smelters are not difficult to comply with.

![Bar chart showing BAT 2016 SO2 Air Emission Limits for the European Union (mg/Nm3).](http://www.amegroup.com/Website/FeatureArticleDetail.aspx?fald=161)

![Bar chart showing SO2 Emission Limits for Copper Smelters in Chile, China and Europe (mg/Nm3).](http://www.amegroup.com/Website/FeatureArticleDetail.aspx?fald=161)

SO2 air quality limits reveal disparities between regions, but some similarities too.

Ambient Air Quality Limits for SO2 in PPM (24 hours average)

![Bar chart showing SO2 air quality limits for different regions](http://www.ivhhn.org/index.php?option=com_content&view=article&id=82)

Similar SO2 air quality limits:
Japan/UE/UK/WHO, China/Chile and Mexico/USA
SO2 emissions of copper smelters in China growing slowly in recent years. New 2016 SO2 emission limits = no more smelter investments close to some cities.

Source: Paper ES3-1, Copper 2016 Conference, Kobe Japan, November 2016
The new copper smelting capacity in China is expected to grow 1.2 million tonnes to 2020 so the demand for concentrates will grow.

Copper smelting capacity to grow modestly in Zambia and Iran. Smelter plans in Indonesia, India, Mexico, Kazakhstan, DRC and others.

Indonesia copper smelting capacity to grow ~800 kt beyond 2020
Other emerging mining countries to increase smelter capacity beyond 2020.
In Chile sulphur emissions controls are agreed smelter by smelter. Sulphur emissions in 2015 still above targets to be enforced in 2019.

3. Environmental Limits to Smelter Emissions and Technology Regulations
Impurities emission controls: important factor behind US copper output slowdown

USA Refined Copper Output from Copper Concentrates

US Clean Air Act 1970
Since 2012 new air emission controls on copper smelters in China. Lead emissions controls in China more strict than Japanese limits.

In Chile, arsenic air emissions targets are defined by law for every smelter. Minamata Convention set mechanisms for mercury emissions reduction.

*Only public smelters emission data included in 2015.

New EU limits for air emission levels of dust from copper smelters. Between 2-5 mg/Nm³ in EU BAT regulation enforced June 2016.
Dust content higher than copper content, arsenic and lead emissions per unit of copper output higher than emissions per unit of input in top EU copper smelters.

Source: Aurubis Environmental Audits.

European Union 2016: BATs and new limits for emissions of dioxins, furans and volatile organic compounds in copper plants

EU BAT Emission Limits for VOC, Dioxins and Furans in Copper Plants (2016)

<table>
<thead>
<tr>
<th></th>
<th>TVOC</th>
<th>PCDD/F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-30 mg/Nm³</td>
<td><0.01 mg/Nm³</td>
</tr>
</tbody>
</table>

• Determine the VOC emissions in mass balance.

• BATs to reduce Dioxin and Furan PCDD/F emissions to air:

1. Select and feed raw materials according to the furnace and according to the abatement techniques used.
2. Optimise combustion to reduce emissions of organic compounds.
3. Use charging systems to give small additions of raw material.
4. Thermal destruction of PCDD/F in furnace at high temp (> 850 °C).
5. Use oxygen injection in the upper zone of the furnace.
6. Internal burner system.
7. Post-combustion chamber or after-burner.
8. or regenerative thermal oxidiser.
9. Avoid exhaust systems with high dust build-up for temp. > 250 °C.
11. Injection of adsorption agent with efficient dust collection system.

• To reduce VOC emissions to air from drying, smelting, SX in hydrometallurgical copper production:

 BAT: process reagent (solvent) with lower steam pressure.

 BAT: closed equipment as mixing tanks, settlers and storage tanks.
Comparison of water emission controls in copper smelters.

Heavy control in Japan on cadmium and mercury in waste water.

China As and Pb water emission controls for metals above benchmark.

Primary Copper Smelters: Emission Limits in Effluents for Minerals (Mg/Lt)

Water Emission Standards in Chinese Non Ferrous Smelters Versus MIGA Standard (mg/Lt)

The EU-28 established best available techniques (BAT) in 2016 for waste reduction of copper and other metal industries.

- BAT/BET recommended, or others that ensure at least an equivalent level of environmental protection.

- BAT 54 looks to reduce quantities of waste sent for disposal from copper production.

- BAT 54 is to organize operations to facilitate process residues reuse, or, failing that, process residues recycling.

- BAT to increase recovery yield from scrap.
- BAT to use energy efficiently.
- BAT to reduce air emissions from furnaces and other devices to optimise performance of the abatement system.

- BATs to prevent or reduce “diffuse emissions” from:
 1. blending, drying, mixing, homogenisation, screening and pellets
 2. charging, smelting and tapping operations
 3. Peirce-Smith and Hoboken converter furnaces
 4. matte conversion process, BAT is use flash furnaces.
 5. a top-blown rotary converter (TBRC) scrap furnace
 6. copper recovery with a slag concentrator
 7. copper-rich slag furnace treatment
 8. anode casting
 9. electrolysis cells
 10. casting of copper alloy
 11. non-acid and acid pickling.

- A wet scrubber or a demister is BAT to reduce acid gas emissions to air from exhaust gases from:
 1. the electrowinning cells.
 2. the electrorefining cells.
 3. the washing chamber of the cathode stripping machine
 4. and the anode scrap washing machine.

EU BAT 2016: more strict water emission rules for metal industries, in particular for mercury emissions of the copper industry.
EU BAT 2016 allows 0.2 mg/l in water discharges of smelters using high arsenic concentrates but set extremely tight discharge thresholds for Hg, Cd and Cu.

In the case of a high arsenic content in the total input of the plant, the BAT-AEL may be up to 0.2 mg/l.
Recover metals from the dust and slime coming from dust abatement system

Reuse or sell calcium compounds (e.g. gypsum) generated by the abatement of SO2

Regenerate or recycle the spent catalysts

Use final slag from furnaces as abrasive or construction material etc.

Use slag from the slag flotation as abrasive in construction or other application

Recover copper content from the rich slag in the slag furnace or slag flotation plant

Use weak acid in the leaching process or for gypsum production

Use furnace lining for recovery of metals or reuse as refractory material

Recover metal from the waste water treatment slime

European Union 2016 Copper BAT: Best Available Techniques/Technologies to Reduce, Reuse or Recycling Waste in Copper Smelters, Refineries and Other Cu Plants (1/2)
European Union 2016 Copper BAT: Best Available Techniques/Technologies to Reduce, Reuse or Recycling Waste in Copper Smelters, Refineries and Other Cu Plants (2/2)
The World Bank benchmark remains relevant in 2016 to compare waste water emission controls in copper smelters.

Other emission limits in MIGA standards for primary copper smelter effluents:

- **pH Max**: 9
- **Total suspended solids**: 50 mg/L
- **Total metals**: 10 mg/L
- **Temperature increase < or =**: 31 gr. C

Source: ICSG based on MIGA website (2016)
Environmental base lines set limits for Arsenic in drinking water. EU drinking water limits for As, Pb less restrictive than Cd, Sb, Hg.

Maximum Limits for Arsenic in Drinking Water (micrograms/Lt)

- US New Jersey: <5
- Australia: <7
- United States: 10
- European Union: 10
- World Health Organization: 10
- Canada: 10
- Japan: 10
- Taiwan: 10
- Mexico: 35
- Bangladesh: 50
- China: 50
- Chile: 50

European Union Drinking Water Limits for Selected Metal Impurities (mg/L)

- Mercury: 0.001 (US EPA), 0.001 mg/L (US FDA)
- Antimony: 0.005 (EU), 0.005 mg/kg in Fishery Products
- Cadmium: 0.005 (EU), 0.005 mg/kg in Fish
- Arsenic: 0.01 (EU), 0.01 mg/kg in Fish
- Lead: 0.01 (EU)
- Selenium: 0.01 (EU)
- Nickel: 0.02 (EU)
- Chromium: 0.05 (EU)
- Chloride: 0.05 (EU)

Limit for Mercury in Drinking Water

Maximum Limits for Mercury in Seafood

- US EPA: 0.002 ppm
- US FDA: 0.001 mg/L
- European Union: 0.01 mg/kg in Fishery Products
- European Union: 1 mg/kg in Fish
Only Japan has very tight limits to concentration of arsenic in liquid waste, natural surfaces and ground water.
4. Occupational Air Exposure Limits for Smelter Emissions of Impurities
In North America and Europe, occupational air exposure to impurities has been slow to converge to similar limits.

https://oshwiki.eu/wiki/Exposure_to_dangerous_substances_in_the_waste_management_sector
Occupational air exposure limits for impurities relevant for the copper industry tend to be tight in Europe versus US and the UK.

https://oshwiki.eu/wiki/Exposure_to_dangerous_substances_in_the_waste_management_sector
More restrictive air exposure limits for copper in the workplace proposed for the European Union in 2016 (mg/Nm³)

![Chart showing exposure limits for copper in workplaces](chart.png)
Self regulation rules in some mining companies becoming more strict than rules for exposure limits in the workplace.

• High Arsenic Metallurgical Test Works @ Barrick

• Use of proper Personal Protective Equipment is essential
 • and should include gloves, eye protection, 2 layers of clothing.
• Laboratory precautions:
 • proper respiratory protection is essential.

• Company policy decision:
 • half-face respirator not enough when dealing with material with arsenic content. 1% or more Arsenic samples requires air stream helmets or other respirators.

• No-tolerance for wearing coveralls/lab coats
 • in eating areas or offices.
• Urine Sampling: ACGIH biological exposure index level
 • for inorganic As is 35 μg/L.

• Liquid wastes in contact with ores high in arsenic: treated as hazardous waste.

Source: Environmental and occupational hygiene in high arsenic metallurgical test works at Barrick Technology Centre – Vancouver BC (Canada) 2016
5. Copper Concentrate Trade Limits and New Risks to Transport of Copper Concentrates and Raw Materials
China set import limits for impurities in copper concentrate >10 years ago, but specialized Chinese smelters are processing complex concentrates and stabilizing wastes.

China Flash Copper Smelter Impurities Showcase:
copper smelter flue dust is water leached,
Sulphur is reduced and the residual is re-smelted.
Hazardous arsenic residual to be disposed outside of the smelter.

Stabilization of High Arsenic Flue Dust
in a Flash Copper Smelter in China (2016)

Source: RW5-4 Copper 2016.
In 2017 China is reviewing current concentrate import limits and might or might not change them from mandatory to recommended. ICSG will track future developments.

China National Standard GB 20424 - Year 2006

- **Concentrate Type**
 - Copper Concentrates
 - Zinc Concentrates
 - Lead Concentrates
 - Bulk Zinc/Lead Concentrates
 - Tin Concentrates
 - Nickel Concentrates
 - Cobalt Concentrates

Maximum Allowed % of Harmful Element Content

<table>
<thead>
<tr>
<th>Concentrate Type</th>
<th>Lead</th>
<th>Arsenic</th>
<th>Iron</th>
<th>Cadmium</th>
<th>Mercury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Concentrates</td>
<td>6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Zinc Concentrates</td>
<td>0.6</td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Concentrates</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Bulk Zinc/Lead Concentrates</td>
<td>0.45</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin Concentrates</td>
<td>0.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Nickel Concentrates</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
<td>0.05</td>
<td>0.001</td>
</tr>
<tr>
<td>Cobalt Concentrates</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td>0.05</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Impact of more impurities in copper smelters and refineries

Impurity Distribution in Flash Smelter - Sample

- Nickel
- Zinc
- Lead
- Bismuth
- Antimony
- Arsenic

0% to Matte 20% to Slag 40% to Gas Treatment

Impurities Flow in Electrolytic Copper Refineries Process (%)

- Zinc
- Nickel
- Arsenic
- Antimony
- Bismuth
- Lead

Copper industry moving faster than trade limits, innovating in waste treatment. Best available technologies observed both in Asia and the European Union.
IMO and EU REACH risk assessments are both based on the «GHS» UN Globally Harmonized System of Classification and Labeling of Chemicals.

<table>
<thead>
<tr>
<th>Pictogram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oxidizers</td>
</tr>
<tr>
<td></td>
<td>Flammables, Self Reactives, Pyrophorics, Self-Heating, Emits Flammable Gas, Organic Peroxides</td>
</tr>
<tr>
<td></td>
<td>Explosives, Self Reactives, Organic Peroxides</td>
</tr>
<tr>
<td></td>
<td>Acutely Toxic (severe)</td>
</tr>
<tr>
<td></td>
<td>Burns Skin, Damages Eyes, Corrosive to Metals</td>
</tr>
<tr>
<td></td>
<td>Gases Under Pressure</td>
</tr>
<tr>
<td></td>
<td>Carcinogen, Respiratory Sensitizer, Reproductive Toxicity, Target Organ Toxicity, Mutagenicity, Aspiration Toxicity</td>
</tr>
<tr>
<td></td>
<td>Toxic to aquatic environment</td>
</tr>
<tr>
<td></td>
<td>Acutely toxic(harmful), Irritant to skin, eyes or respiratory tract, Skin sensitizer, Hazardous to the Ozone layer.</td>
</tr>
</tbody>
</table>
Some copper concentrates can be harmful to the marine environment and a risk to crews.

- International Maritime Organization (IMO)
- Hazard assessment of solid cargoes

Trade of Ore and Concentrate regulated by IMO:
- In packaged form (IMDG Code)
- In bulk (IMSBC Code and MARPOL Convention)

2012 guide to Annex V of MARPOL:
- 6 of 7 hazard criteria to identify HME relevant to copper ores and concentrates

IMO hazard assessment based on UN GHS. But UN GHS has limited guidance for complex materials such as copper ores and concentrates.
IMO Criteria Aiming to Reduce Maritime Risks in Transport of Copper Ores and Concentrates

International Maritime Dangerous Goods Code (IMDG):
- packaged copper ores and concentrates.

International Convention for the Prevention of Pollution from Ships (MARPOL) - Annex V
- HME: Harmful to the Marine Environment

International Maritime Solid Bulk Cargoes Code (IMSBC)
- MHB: Materials Hazardous Only in Bulk
Materials Hazardous only in Bulk (MHB): Hazard assessment.

% of Minerals in Copper Concentrates

110 Samples - Minerals in less than 5 samples excluded

- Sb
- As
- Zn
- Pb
- Ni
- Ag
- Cd
- Co

Legend:
- Min Mineral Content
- 50% of Sample
- 60% of Sample
- 70% of Sample
- 80% of Sample
- 90% of Sample
- Max Mineral Content
Some copper concentrates and ores are HME and/or are MHB.

ICA: % of Minerals in 110 Copper Concentrates
IMO 25th Session January 2016

- IMO Sub-Committee on Carriage of Cargoes and Containers
- Copper Industry Classification of Cu Concentrates presented to IMO.
- Composition of copper concentrates assessed for 122 samples.
- No mercury (Hg), sulphur (S), gold (Au), other minerals included.
6 MHB hazard classes related to copper concentrates: “toxic solids” criteria clear but not yet “corrosive solids”.

Materials Hazardous only in Bulk: MHB hazard classes

1. Combustible solids
2. Self-heating solids
3. Solids evolving into flammable gas when wet
4. Solids that evolve toxic gas when wet
5. Toxic solids
6. Corrosive solids

Copper industry hazard assessment findings:

- presence of lead, cadmium, arsenic and/or nickel.
- Median % of arsenic 0.11 %, some conc. 7.5 % arsenic.

• Conclusion:

1. A percentage of the copper concentrates have toxic solids in the samples, so are MHB.
2. Further work needed on corrosive solids, and 1, 2, 3, 4.

• Hazard classification of minerals www.metclas.eu
MHB sulphide copper ores and concentrates listed as “health hazards” at the IMSBC Code.

• If a copper ore or concentrate is MHB now:
 • shipped under the “Metal Sulphide Schedule” of IMSBC Code as GROUP B Cargo of IMSBC Code (=MHB):
 • persons exposed to wear eye protection, filter masks, protective clothing.

• Some concentrates are MHB but not listed as hazards in the “Metal Sulphide Schedule”.

• Change in IMSBC “Metal Sulphide Schedule” in 2016 IMO meeting
Human Health Hazard
HME Assessment Criteria

- MARPOL V: Harmful to Marine Environment (HME) if mutagenic, carcinogenic or STOT* repeated exposure.

- IMDG Code: acute hazard oral, dermal or inhaled/Skin Corrosion Irritation

- IMSBC Code: all above + serious eye damage, +STOT* single exposure.

- IMSBC Code: A: liquefy, B: chemical hazard, C: no A no B.

* STOT

Specific target organ toxicity
IMO Hazard Assessment of Copper Ores and Concentrates for Marine Transport: MARPOL Annex V

Harmful to the Marine Environment: HME criteria related to copper ores and concentrates

1. **Acute Aquatic Toxicity** Category 1; and/or
2. **Chronic Aquatic Toxicity** Category 1 or 2; and/or
3. **Carcinogenicity Category** 1A or 1B combined with not being rapidly degradable and having high bioaccumulation; and/or
4. **Mutagenicity Category** 1A or 1B combined with not being rapidly degradable and having high bioaccumulation; and/or
5. **Reproductive Toxicity** Category 1A or 1B combined with not being rapidly degradable and having high bioaccumulation; and/or
6. **Specific Target Organ Toxicity** Repeated Exposure Category 1 combined with not being rapidly degradable and having high bioaccumulation;
Which copper ores and concentrates are considered HME? What treatment and who is responsible?

Copper Concentrates HME Assessment

- **Chalcopyrite**: Non-HME
- **Chalcocite > 28%**: aquatic acute 1 = HME

HME Concentrates Water Treatment:
- Costs covered in shipping contracts.
- Shipper (cargo owner) responsible for HME/non HME declaration.

HME implementation started in 2013,

- ICMM, Copper Alliance tools development 2014 - 2016
- IMO and port authorities accept shippers HME declaration.
IMO January 2017: 20% of copper concentrates could be classified Hazardous to the Marine Environment (HME) given Ecotoxicity Reference Values as “Aquatic Acute 1”

Chalcopyrite (non-HME) most of the sample of Cu concentrates. Chalcocite (HME) small share of the sample presented to IMO.
In 2016, IMO Sub-Committee on Carriage of Cargoes and Containers included corrosive solids as “MHB”.

- Changes to IMSBC “Metal Sulphide Schedule”: health effects.

- Method for MHB criteria “corrosive solids” to copper ores and concentrates risk assessment.

- UN GHS test developed for corrosive liquids, but never validated for corrosive solids.

- ICMM developed new corrosive solids test protocol in 2016 with testing labs.
EU REACH hazard classification and toxicity labelling proposals issued for every one of the copper raw and intermediate materials.

Copper, Anode & Blister, Copper Matte, Black Copper, Copper Slimes, Copper Speiss, Slags, Copper Refining, Copper Scale, Copper Flue Dust, Copper electrolytes, Copper Sulfuric Acid, Copper Residues, Copper Cupro, Copper Final Slags

Example 1: Flue Dust Recovered from Exhaust Gas Streams

<table>
<thead>
<tr>
<th>Hazard Class and Category Code(s)</th>
<th>Hazard Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Tox. 3 (oral)</td>
<td>H301: Toxic if swallowed</td>
</tr>
<tr>
<td>Acute Tox. 3 (inhalation)</td>
<td>H331: Toxic if inhaled</td>
</tr>
<tr>
<td>Skin Corr. 1B</td>
<td>H314: Causes severe skin burns and eye damage.</td>
</tr>
<tr>
<td>Eye Damage 1</td>
<td>H318: Causes serious eye damage.</td>
</tr>
<tr>
<td>Skin Sens. 1</td>
<td>H317: May cause an allergic skin reaction.</td>
</tr>
<tr>
<td>Repr. 1A</td>
<td>H360: May damage the unborn child. Suspect damaging fertility. (Route of exposure: oral or inhalation).</td>
</tr>
<tr>
<td>Muta. 2</td>
<td>H341: Suspected of causing genetic defects.</td>
</tr>
<tr>
<td>Carc. 1A</td>
<td>H350: May cause cancer.</td>
</tr>
<tr>
<td>STOT Rep. Exp. 1</td>
<td>H372: Causes damage to organs through prolonged or repeated exposure. (Affected organs: central nervous system, blood and kidneys; Route of exposure: inhalation or ingestion).</td>
</tr>
<tr>
<td>Aquatic Acute 1</td>
<td>H400: Very toxic to aquatic life.</td>
</tr>
<tr>
<td>Aquatic Chronic 1</td>
<td>H410: Very toxic to aquatic life with long lasting effects</td>
</tr>
</tbody>
</table>

Example 2: Spent Electrolytes from Copper Refineries

<table>
<thead>
<tr>
<th>Hazard Class and Category Code(s)</th>
<th>Hazard Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Tox. 4 (oral)</td>
<td>H302: Harmful if swallowed</td>
</tr>
<tr>
<td>Skin Corr. 1A</td>
<td>H314: Causes severe skin burns and eye damage</td>
</tr>
<tr>
<td>Eye Damage 1</td>
<td>H318: Causes serious eye damage</td>
</tr>
<tr>
<td>Resp. Sens. 1</td>
<td>H334: May cause allergy or asthma or breathing difficulties if inhaled</td>
</tr>
<tr>
<td>Skin Sens. 1</td>
<td>H317: May cause an allergic skin reaction</td>
</tr>
<tr>
<td>Repr. 1B</td>
<td>H360: May damage fertility or the unborn child (Route of exposure: oral and dermal)</td>
</tr>
<tr>
<td>Muta. 2</td>
<td>H341: Suspected of causing genetic defects</td>
</tr>
<tr>
<td>Carc. 1A</td>
<td>H350: May cause cancer</td>
</tr>
<tr>
<td>STOT Rep. Exp. 1</td>
<td>H372: Causes damage to organs in prolonged or repeated exposure</td>
</tr>
<tr>
<td>Aquatic Acute 1</td>
<td>H400: Very toxic to aquatic life</td>
</tr>
<tr>
<td>Aquatic Chronic 1</td>
<td>H410: Very toxic to aquatic life with long lasting effects</td>
</tr>
</tbody>
</table>
Some European Union regulations under discussion are a challenge to the trade flows of copper concentrates related to Western Europe.

- Mercury a restricted substance since 2017 in REACH.

European Chemicals Agency: if a metal contains >0.3% lead, might be classified as “toxic to reproduction”. Compliance by 1 March 2018.

If copper is classified as a biocide in the EU in 2017 it will require a special UN GHS classification.
Mining companies and copper industry organizations: aware of copper impurities and working on the most urgent regulatory issues.

e.g.:
Regarding occupational inhalation limits for copper,
Germany MAK and SCOEL proposals to lower the OEL by a factor of 10X.
ICA expert panel assessing the state of the science to respond

Best practices on impurities management:
ICMM members actively exchanging information

Industry response to the risk of copper concentrates classification as hazard (MHB) under IMO and related transport regulations:
ICA and ICMM joint project to assess corrosivity of copper concentrates still ongoing
Old technologies can survive operational for long periods in sectors of the economy protected from stringent regulation or international emission standards or indirectly subsidized.

But when the standards are shared, old smelters using concentrates have difficulty to compete without

• continuous investment
• technology innovations
• re-locations
• outdated plant closures.
Next ICSG meeting, Copper mine supply and refined copper market forecasts:

27-28 April 2017
Lisbon, Portugal.

A Joint Seminar with Copper, Lead, Zinc and Nickel Study Groups will be held on Thursday 27 April on the topic of “Meeting the Challenge of Mining and Smelting/Refining Waste”.

www.icsg.org
Order ICSG publications: mail@icsg.org